Mechanical properties in crumple-formed paper derived materials subjected to compression

نویسندگان

  • D.A.H. Hanaor
  • E.A. Flores Johnson
  • S. Wang
  • S. Quach
  • K.N. Dela-Torre
  • Y. Gan
  • L. Shen
چکیده

The crumpling of precursor materials to form dense three dimensional geometries offers an attractive route towards the utilisation of minor-value waste materials. Crumple-forming results in a mesostructured system in which mechanical properties of the material are governed by complex cross-scale deformation mechanisms. Here we investigate the physical and mechanical properties of dense compacted structures fabricated by the confined uniaxial compression of a cellulose tissue to yield crumpled mesostructuring. A total of 25 specimens of various densities were tested under compression. Crumple formed specimens exhibited densities in the range 0.8-1.3 g cm-3, and showed high strength to weight characteristics, achieving ultimate compressive strength values of up to 200 MPa under both quasi-static and high strain rate loading conditions and deformation energy that compares well to engineering materials of similar density. The materials fabricated in this work and their mechanical attributes demonstrate the potential of crumple-forming approaches in the fabrication of novel energy-absorbing materials from low-cost precursors such as recycled paper. Stiffness and toughness of the materials exhibit density dependence suggesting this forming technique further allows controllable impact energy dissipation rates in dynamic applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical properties of hot-pressed Al-4.5 wt. % Cu/WC composite

In this study, the elemental powders of aluminum and copper were initially subjected to mechanical alloying using an attrition ball mill under argon atmosphere to produce an Al-4.5 wt% Cu powder alloy. The WC nanoparticles were then added to the powder alloy and milled in a planetary ball mill to explore the role of the WC nanoparticles on the mechanical properties of the fabricated composite p...

متن کامل

First-Order Formulation for Functionally Graded Stiffened Cylindrical Shells Under Axial Compression

The buckling analysis of stiffened cylindrical shells by rings and stringers made of functionally graded materials subjected to axial compression loading is presented. It is assumed that the material properties vary as a power form of the thickness coordinate variable. The fundamental relations, the equilibrium and stability equations are derived using the first order shear deformation theory. ...

متن کامل

High-Temperature Compressive Resistance and Mechanical Properties Improvement of Strain-Induced Melt Activation-Processed Al-Mg-Si Aluminum Alloy

Even though the high-temperature formability of Al alloys can be enhanced by the strain-induced melt activation (SIMA) process, the mechanical properties of the formed alloys are necessary for estimation. In this research, a modified two-step SIMA (TS-SIMA) process that omits the cold working step of the traditional SIMA process is adopted for the 6066 Al-Mg-Si alloy to obtain globular grains w...

متن کامل

Mechanical properties of CNT reinforced nano-cellular polymeric nanocomposite foams

Mechanics of CNT-reinforced nano-cellular PMMA nanocomposites are investigated using coarse-grained molecular dynamics simulations. Firstly, static uniaxial stretching of bulk PMMA polymer is simulated and the results are compared with literature. Then, nano-cellular foams with different relative densities are constructed and subjected to static uniaxial stretching and obtained stress-strain cu...

متن کامل

Mechanical Behavior of a FGM Capacitive Micro-Beam Subjected to a Heat Source

This paper presents mechanical behavior of a functionally graded (FG) cantilever micro-beam subjected to a nonlinear electrostatic pressure and thermal moment considering effects of material length scale parameters. Material properties through the beam thickness direction are graded. The top surface of the micro-beam is made of pure metal and the bottom surface from a mixture of metal and ceram...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2017